Matroids on convex geometries (cg-matroids)
نویسندگان
چکیده
We consider matroidal structures on convex geometries, which we call cg-matroids. The concept of a cg-matroid is closely related to but different from that of a supermatroid introduced by Dunstan, Ingleton, and Welsh in 1972. Distributive supermatroids or poset matroids are supermatroids defined on distributive lattices or sets of order ideals of posets. The class of cg-matroids includes distributive supermatroids (or poset matroids). We also introduce the concept of a strict cg-matroid, which turns out to be exactly a cg-matroid that is also a supermatroid. We show characterizations of cg-matroids and strict cg-matroids by means of the exchange property for bases and the augmentation property for independent sets. We also examine submodularity structures of strict cg-matroids.
منابع مشابه
The greedy algorithm for strict cg-matroids
A matroid-like structure defined on a convex geometry, called a cg-matroid, is defined by S. Fujishige, G. A. Koshevoy, and Y. Sano in [6]. Strict cg-matroids are the special subclass of cg-matroids. In this paper, we show that the greedy algorithm works for strict cg-matroids with natural weightings, and also show that the greedy algorithm works for a hereditary system on a convex geometry wit...
متن کاملRank functions of strict cg-matroids
A matroid-like structure defined on a convex geometry, called a cg-matroid, is defined by S. Fujishige, G. A. Koshevoy, and Y. Sano in [9]. A cg-matroid whose rank function is naturally defined is called a strict cg-matroid. In this paper, we give characterizations of strict cg-matroids by their rank functions.
متن کاملA general model for matroids and the greedy algorithm
We present a general model for set systems to be independence families with respect to set families which determine classes of proper weight functions on a ground set. Within this model, matroids arise from a natural subclass and can be characterized by the optimality of the greedy algorithm. This model includes and extends many of the models for generalized matroid-type greedy algorithms propo...
متن کاملBrylawski’s Decomposition of NBC Complexes of Abstract Convex Geometries and Their Associated Algebras
We introduce a notion of a broken circuit and an NBC complex for an (abstract) convex geometry. Based on these definitions, we shall show the analogues of the Whitney-Rota’s formula and Brylawski’s decomposition theorem for broken circuit complexes on matroids for convex geometries. We also present an Orlik-Solomon type algebra on a convex geometry, and show the NBC generating theorem. This not...
متن کاملOperations on M-Convex Functions on Jump Systems
A jump system is a set of integer points with an exchange property, which is a generalization of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid (or a submodular system). Recently, the concept of M-convex functions on constant-parity jump systems is introduced by Murota as a class of discrete convex functions that admit a local criterion for global minimality. M-con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007